
CORRECTIONS TO FAULT SECURE OF
MAJORITY LOGIC DECODER AND DETECTOR FOR

MEMORYAPPLICATIONS

Viji.D Mr.T.Sathees Kumar

PG Scholar – Embedded Systems AP/ECE

Prist University, Thanjuvr - India Prist University, Thanjuvr – India

Abstract : Nowadays, single event upsets (SEUs)

altering digital circuits are becoming a bigger

concern for memory applications. This paper

presents an error-detection method for difference-

set cyclic codes with majority logic decoding.

Majority logic decodable codes are suitable for

memory applications due to their capability to

correct a large number of errors. However, they

require a large decoding time that impacts memory

performance. The proposed fault-detection method

significantly reduces memory access time when

there is no error in the data read. The technique

uses the majority logic decoder itself to detect

failures, which makes the area overhead minimal

and keeps the extra power consumption low.

Index Terms—Block codes, difference-set, error

correction codes (ECCs), low-density parity check

(LDPC), majority logic, memory.

INTRODUCTION

THE impact of technology scaling smaller

dimensions, higher integration densities, and lower

operating voltages has come to a level that

reliability of memories is put into jeopardy, not

only in extreme radiation environments like

spacecraft and avionics electronics, but also at

normal terrestrial environments. Especially, SRAM

memory failure rates are increasing significantly,

therefore posing a major reliability concern for

many applications. Some commonly used

mitigation techniques are:

• triple modular redundancy (TMR);

• error correction codes (ECCs).

TMR is a special case of the von Neumann

method consisting of three versions of the design in

parallel, with a majority voter selecting the correct

output. As the method suggests, the complexity

overhead would be three times plus the complexity

of the majority voter and thus increasing the power

consumption. For memories, it turned out that ECC

codes are the best way to mitigate memory soft

errors.

For terrestrial radiation environments where

there is a low soft error rate (SER), codes like

single error correction and double error detection

(SEC–DED), are a good solution, due to their low

encoding and decoding complexity. However, as a

consequence of augmenting integration densities,

there is an increase number of soft errors, which

produces the need for higher error correction

capabilities. The usual multi error correction codes,

such as Reed–Solomon (RS) or Bose–Chaudhuri–

Hocquenghem (BCH) are not suitable for this task.

The reason for this is that they use more

sophisticated decoding algorithms, like complex

algebraic (e.g., floating point operations or

logarithms) decoders that can decode in fixed time,

and simple graph decoders, that use iterative

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 
ISSN 2229-5518 

255

IJSER © 2013 
http://www.ijser.org 

IJSER



algorithms (e.g., belief propagation). Both are very

complex and increase computational costs.

Among the ECC codes that meet the

requirements of higher error correction capability

and low decoding complexity, cyclic block codes

have been identified as good candidates, due to

their property of being majority logic (ML)

decodable. A subgroup of the low-density parity

check (LDPC) codes, which belongs to the family

of the ML decodable codes, has been researched

in. In this paper, we will focus on one specific type

of LDPC codes, namely the difference-set cyclic

codes (DSCCs), which is widely used in the

Japanese teletext system or FM multiplex

broadcasting systems. The main reason for using

ML decoding is that it is very simple to implement

and thus it is very practical and has low

complexity. The drawback of ML decoding is that,

for a coded word of -bits, it takes cycles in the

decoding process, posing a big impact on system

performance.

One way of coping with this problem is to

implement parallel encoders and decoders. This

solution would enormously increase the complexity

and, therefore, the power consumption. As most of

the memory reading accesses will have no errors,

the decoder is most of the time working for no

reason. This has motivated the use of a fault

detector module that checks if the codeword

contains an error and then triggers the correction

mechanism accordingly. In this case, only the

faulty code words need correction, and therefore

the average read memory access is speeded up, at

the expense of an increase in hardware cost and

power consumption. A similar proposal has been

presented in for the case of flash memories.

The simplest way to implement a fault

detector for an ECC is by calculating the syndrome,

but this generally implies adding another very

complex functional unit. This paper explores the

idea of using the ML decoder circuitry as a fault

detector so that read operations are accelerated with

almost no additional hardware cost. The results

show that the properties of DSCC-LDPC enable

efficient fault detection.

Fig: Memory system schematic with MLD.

EXISTENT MAJORITY LOGIC
DECODER

MLD is based on a number of parity check

equations which are orthogonal to each other, so

that, at each iteration, each codeword bit only

participates in one parity check equation, except

the very first bit which contributes to all equations.

For this reason, the majority result of these parity

check equations decide the correctness of the

current bit under decoding. MLD was first

mentioned in for the Reed–Müller codes. Then, it

was extended and generalized in for all types of

systematic linear block codes that can be totally

orthogonalized on each codeword bit.

A generic schematic of a memory system is

depicted in Figure for the usage of an ML decoder.

Initially, the data words are encoded and then

stored in the memory. When the memory is read,

the codeword is then fed through the ML decoder

before sent to the output for further processing. In

this decoding process, the data word is corrected

from all bit-flips that it might have suffered while

being stored in the memory.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 
ISSN 2229-5518 

256

IJSER © 2013 
http://www.ijser.org 

IJSER



PLAIN ML DECODER

The ML decoder is a simple and powerful

decoder, capable of correcting multiple random bit-

flips depending on the number of parity check

equations. It consists of four parts: 1) a cyclic shift

register; 2) an XOR matrix; 3) a majority gate; and

4) an XOR for correcting the codeword bit under

decoding, as illustrated in Fig. 2. The input signal

is initially stored into the cyclic shift register and

shifted through all the taps. The intermediate

values in each tap are then used to calculate the

results of the check sum equations from the XOR

matrix. In the cycle, the result has reached the final

tap, producing the output signal.

As stated before, input might correspond to

wrong data corrupted by a soft error. To handle this

situation, the decoder would behave as follows.

After the initial step, in which the codeword is

loaded into the cyclic shift register, the decoding

starts by calculating the parity check equations

hardwired in the XOR matrix. The resulting sums

are then forwarded to the majority gate for

evaluating its correctness. If the number of 1’s

received in is greater than the number of 0’s, that

would mean that the current bit under decoding is

wrong, and a signal to correct it would be triggered.

Otherwise, the bit under decoding would be correct

and no extra operations would be needed on it.

In the next step, the content of the registers

are rotated and the above procedure is repeated

until all codeword bits have been processed.

Finally, the parity check sums should be zero if the

codeword has been correctly decoded. Further

details on how this algorithm works can be found

in this unit. The whole algorithm is depicted in

Figure the previous algorithm needs as many cycles

as the number of bits in the input signal, which is

also the number of taps, in the decoder. This is a

big impact on the performance of the system,

depending on the size of the code.

PLAIN MLD WITH SYNDROME FAULT

DETECTOR (SFD)

In order to improve the decoder

performance, alternative designs may be used. One

possibility is to add a fault detector by calculating

the syndrome, so that only faulty code words are

decoded. Since most of the code words will be

error-free, no further correction will be needed, and

therefore performance will not be affected.

Although the implementation of an SFD reduces

the average latency of the decoding process, it also

adds complexity to the design.

The SFD is an XOR matrix that calculates

the syndrome based on the parity check matrix.

Each parity bit results in a syndrome equation.

Therefore, the complexity of the syndrome

calculator increases with the size of the code. faulty

codeword is detected when at least one of the

syndrome bits is “1.” This triggers the MLD to start

the decoding, as explained before. On the other

hand, if the codeword is error-free, it is forwarded

directly to the output, thus saving the correction

cycles. In this way, the performance is improved in

exchange of an additional module in the memory

system: a matrix of XOR gates to resolve the parity

check matrix, where each check bit results into a

syndrome equation. This finally results in a quite

complex module, with a large amount of additional

hardware and power consumption in the system.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 
ISSN 2229-5518 

257

IJSER © 2013 
http://www.ijser.org 

IJSER



Fig: Schematic of an ML decoder. I) cyclic shift register. II) XOR matrix. III) Majority gate. IV) XOR for
correction
.

Fig: Memory system schematic of an ML decoder
with SFD.

PROPOSED MLDD

This section presents a modified version of the

ML decoder that improves the designs presented

before. Starting from the original design of the ML

decoder introduced in, the proposed ML

detector/decoder (MLDD) has been implemented

using the difference-set cyclic codes (DSCCs).

Fig: Schematic of the proposed MLDD. i) Control unit. ii) Output tristate buffers.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 
ISSN 2229-5518 

258

IJSER © 2013 
http://www.ijser.org 

IJSER



This code is part of the LDPC codes, and,

based on their attributes, they have the following

properties:

• ability to correct large number of errors;

• sparse encoding, decoding and checking circuits

synthesizable into simple hardware;

• modular encoder and decoder blocks that allow an

efficient hardware implementation;

• systematic code structure for clean partition of

information and code bits in the memory.

A detailed schematic of the proposed design is

shown. The figure shows the basic ML decoder

with an -tap shift register, an XOR array to

calculate the orthogonal parity check sums and a

majority gate for deciding if the current bit under

decoding needs to be inverted. Those components

are the same as the ones for the plain ML decoder

shown.

The additional hardware to perform the

error detection is illustrated in Figure as: i) the

control unit which triggers a finish flag when no

errors are detected after the third cycle and ii) the

output. The figure shows Flow diagram of the

MLDD algorithm. Tri state buffers. The output tri

state buffers are always in high impedance unless

the control unit sends the finish signal so that the

current values of the shift register are forwarded to

the output .

Fig.: Memory system schematic of an MLDD.

Fig : Schematic of the control unit.

The control unit manages the detection

process. It uses a counter that counts up to three,

which distinguishes the first three iterations of the

ML decoding. In these first three iterations, the

control unit evaluates the by combining them with

the OR1 function. This value is fed into a three-

stage shift register, which holds the results of the

last three cycles. In the third cycle, the OR2 gate

evaluates the content of the detection register.

When the result is “0,” the FSM sends out the

finish signal indicating that the processed word is

error-free. In the other case, if the result is “1,” the

ML decoding process runs until the end.

This clearly provides a performance

improvement respect to the traditional method.

Most of the words would only take three cycles

(five, if we consider the other two for input/output)

and only those with errors (which should be a

minority) would need to perform the whole

decoding process. More information about

performance details will be provided in the next

sections. The schematic for this memory system (is

very similar to the one in Figure, adding the control

logic in the MLDD module.

CONCLUSION

In this paper, a fault-detection mechanism,

MLDD, has been presented based on ML decoding

using the DSCCs. Exhaustive simulation test

results show that the proposed technique is able to

detect any pattern of up to five bit-flips in the first

three cycles of the decoding process. This improves

the performance of the design with respect to the

traditional MLD approach. On the other hand, the

MLDD error detector module has been designed in

a way that is independent of the code size.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 
ISSN 2229-5518 

259

IJSER © 2013 
http://www.ijser.org 

IJSER



This makes its area overhead quite

reduced compared with other traditional

approaches such as the syndrome calculation

(SFD). In addition, a theoretical proof of the

proposed MLDD scheme for the case of double

errors has also been presented. The extension of

this proof to the case of four errors would confirm

the validity of the MLDD approach for a more

general case, something that has only been done

through simulation in the paper. This is, therefore,

an interesting problem for future research. The

application of the proposed technique to memories

that use scrubbing is also an interesting topic and

was in fact the original motivation that led to the

MLDD scheme.

REFERENCE :

[1] C. W. Slayman, “Cache and memory error

detection, correction, and reduction techniques for

terrestrial servers and workstations,” IEEE Trans.

Device Mater. Reliabil., vol. 5, no. 3, pp. 397–404,

Sep. 2005.

[2] E. J.Weldon, Jr., “Difference-set cyclic

codes,” Bell Syst. Tech. J., vol. 45, pp. 1045–1055,

1966.

[3] C. Tjhai, M. Tomlinson, M. Ambroze, and M.

Ahmed, “Cyclotomic idempotent-based binary

cyclic codes,” Electron. Lett., vol. 41, no. 6, Mar.

2005.

[4] T. Shibuya and K. Sakaniwa, “Construction of

cyclic codes suitable for iterative decoding via

generating idempotents,” IEICE Trans.

fundamentals, vol. E86-A, no. 4, pp. 928–939,

2003.

[5] R. C. Baumann, “Radiation-induced soft errors

in advanced semicon- ductor technologies,” IEEE

Trans. Device Mater. Reliabil., vol. 5, no. 3, pp.

301–316, Sep. 2005.

[6] J. von Neumann, “Probabilistic logics and

synthesis of reliable organ- isms from unreliable

components,” Automata Studies, pp. 43–98, 1956.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013 
ISSN 2229-5518 

260

IJSER © 2013 
http://www.ijser.org 

IJSER




